Projective modules over polynomial rings and dynamical Gröbner bases
نویسنده
چکیده
منابع مشابه
Some applications of Gröbner bases in homological algebra
In this paper we make some computations in homological algebra using Gröbner bases for modules over polynomials rings with coefficients in a Noetherian commutative ring. In particular, we show easy procedures for computing the Ext and Tor modules.
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کاملComputing syzygies with Gröbner bases
The aim of this article is to motivate the inclusion of Gröbner bases in algebraic geometry via the computation of syzygies. In particular, we will discuss Gröbner bases for finite modules over polynomial rings, and mention how this tool can be used to compute minimal free resolutions of graded finite modules. We won’t prove any results. Instead, we refer the reader to the references at the end...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملComprehensive Gröbner bases and von Neumann regular rings
There is a close relation between comprehensive Gröbner bases and non-parametric Gröbner bases over commutative von Neumann regular rings. By this relation, Gröbner bases over a commutative von Neumann regular ring can be viewed as an alternative to comprehensive Gröbner bases. (Therefore, this Gröbner basis is called an “alternative comprehensive Gröbner basis (ACGB)”.) In the first part of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008